torchcvnn.nn.Transformer¶
- class torchcvnn.nn.Transformer(d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6, num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, activation: ~torch.nn.modules.module.Module = <class 'torchcvnn.nn.modules.activation.CReLU'>, layer_norm_eps: float = 1e-05, batch_first: bool = False, norm_first: bool = False, bias: bool = True, device=None, dtype: ~torch.dtype = torch.complex64)[source]¶
A transformer model.
Adapted from
torch.nn.Transformer
.User is able to modify the attributes as needed. The architecture is based on the paper Attention Is All You Need. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010.
The
MultiheadAttention
implementation is based on the paper Building blocks for a complex-valued transformer architecture. Florian Eilers, Xiaoyi Jiang. 2023. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP).- Parameters:
d_model – the number of expected features in the encoder/decoder inputs (default=512).
nhead – the number of heads in the multiheadattention models (default=8).
num_encoder_layers – the number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers – the number of sub-decoder-layers in the decoder (default=6).
dim_feedforward – the dimension of the feedforward network model (default=2048).
dropout – the dropout value (default=0.1).
activation – the activation function of encoder/decoder intermediate layer. Default:
CReLU
.custom_encoder – custom encoder (default=None).
custom_decoder – custom decoder (default=None).
layer_norm_eps – the eps value in layer normalization components (default=1e-5).
batch_first – If
True
, then the input and output tensors are provided as (batch, seq, feature). Default:False
(seq, batch, feature).norm_first – if
True
, encoder and decoder layers will perform LayerNorms before other attention and feedforward operations, otherwise after. Default:False
(after).bias – If set to
False
,Linear
andLayerNorm
layers will not learn an additive bias. Default:True
.
Examples
import torchcvnn as c_nn import torch transformer_model = c_nn.Transformer(nhead=16, num_encoder_layers=12) src = torch.rand((10, 32, 512), dtype=torch.complex64) tgt = torch.rand((20, 32, 512), dtype=torch.complex64) out = transformer_model(src, tgt)
- __init__(d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6, num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1, activation: ~torch.nn.modules.module.Module = <class 'torchcvnn.nn.modules.activation.CReLU'>, layer_norm_eps: float = 1e-05, batch_first: bool = False, norm_first: bool = False, bias: bool = True, device=None, dtype: ~torch.dtype = torch.complex64) None [source]¶
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__
([d_model, nhead, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Set the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(src, tgt[, src_mask, tgt_mask, ...])Define the computation performed at every call.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
set_submodule
(target, module)Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training