torchcvnn.nn.MultiheadAttention¶
- class torchcvnn.nn.MultiheadAttention(embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, add_bias_kv=False, add_zero_attn=False, kdim: int | None = None, vdim: int | None = None, batch_first: bool = False, device: device | None = None, dtype: dtype = torch.complex64)[source]¶
This class is adapted from torch.nn.MultiheadAttention to support complex valued tensors.
Allows the model to jointly attend to information from different representation subspaces as described in the paper [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
\[\mbox{MultiHead}(Q, K, V) = [head_1, \dots, head_h] W^O\]where \(head_i = \mbox{Attention}(Q W^Q_i, KW^K_i, VW^V_i)\)
This implementation is based on the paper Building blocks for a complex-valued transformer architecture. Florian Eilers, Xiaoyi Jiang. 2023. In International Conference on Acoustics, Speech, and Signal Processing (ICASSP).
Attention is defined as follows:
\[\mbox{Attention}(Q, K, V) = \sigma(\Re[\frac{Q K^H}{\sqrt{d_k}}])V\]- Parameters:
embed_dim – Total dimension of the model.
num_heads – Number of parallel heads. Note that embed_dim will be split accross num_heads (i.e. each head will have dimension embed_dim // num_heads)
dropout – Dropout probability on attn_output_weights. Default: 0.0
kdim – Total number of features for keys. Default None which uses kdim=embed_dim
vdim – Total number of features for keys. Default None which uses vdim=embed_dim
batch_first – If True, then the input and output tensors are provided as (batch, seq, feature). Default False with tensors as (seq, batch, feature)
Example
import torchcvnn as c_nn import torch nhead = 8 seq_len = 10 batch_size = 32 num_features = 512 multihead_attn = c_nn.MultiheadAttention(embed_dim=num_features, num_heads=nhead) src = torch.rand(seq_len, batch_size, num_features, dtype=torch.complex64) attn_output, attn_output_weights = multihead_attn(src, src, src) # attn_output is (seq_len, batch_size, numè_features)
- __init__(embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, add_bias_kv=False, add_zero_attn=False, kdim: int | None = None, vdim: int | None = None, batch_first: bool = False, device: device | None = None, dtype: dtype = torch.complex64)[source]¶
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(embed_dim, num_heads[, dropout, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Return the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(query, key, value[, ...])Computes attention outputs using query, key and value embeddings.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
mtia([device])Move all model parameters and buffers to the MTIA.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post-hook to be run after module's
load_state_dict()is called.register_load_state_dict_pre_hook(hook)Register a pre-hook to be run before module's
load_state_dict()is called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_post_hook(hook)Register a post-hook for the
state_dict()method.register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_submodule(target, module[, strict])Set the submodule given by
targetif it exists, otherwise throw an error.share_memory()state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining