Coverage for /home/runner/work/torchcvnn/torchcvnn/src/torchcvnn/datasets/alos2/dataset.py: 0%
56 statements
« prev ^ index » next coverage.py v7.8.0, created at 2025-04-13 08:53 +0000
« prev ^ index » next coverage.py v7.8.0, created at 2025-04-13 08:53 +0000
1# MIT License
3# Copyright (c) 2024 Jeremy Fix
5# Permission is hereby granted, free of charge, to any person obtaining a copy
6# of this software and associated documentation files (the "Software"), to deal
7# in the Software without restriction, including without limitation the rights
8# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9# copies of the Software, and to permit persons to whom the Software is
10# furnished to do so, subject to the following conditions:
12# The above copyright notice and this permission notice shall be included in
13# all copies or substantial portions of the Software.
15# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21# SOFTWARE.
23# Standard imports
24# External imports
25from torch.utils.data import Dataset
26import numpy as np
28# Local imports
29from . import VolFile, LeaderFile, TrailerFile, SARImage
32class ALOSDataset(Dataset):
33 r"""
34 ALOSDataset
36 The format is described in
37 `<https://www.eorc.jaxa.jp/ALOS/en/alos-2/pdf/product_format_description/PALSAR-2_xx_Format_CEOS_E_g.pdf>`_
39 The dataset is constructed from the volume file. If leader and trailer files
40 are colocated, they are loaded as well.
42 Important, this code has been developed for working with L1.1 HBQ-R Quad Pol
43 datafiles. It is not expected to work out of the box for other levels and
44 for less than 4 polarizations.
46 Arguments:
47 volpath: the path to the VOLUME file
48 transform : the transform applied the cropped image. It applies
49 on a dictionnary of patches {'HH': np.array, 'HV': np.array}
50 crop_coordinates: the subpart of the image to consider as ((row_i, col_i), (row_j, col_j))
51 defining the corner coordinates
52 patch_size: the dimensions of the patches to consider (rows, cols)
53 patch_stride: the shift between two consecutive patches, default:patch_size
54 """
56 def __init__(
57 self,
58 volpath: str = None,
59 transform=None,
60 crop_coordinates: tuple = None,
61 patch_size: tuple = (128, 128),
62 patch_stride: tuple = None,
63 ):
64 super().__init__()
66 self.transform = transform
68 self.patch_size = patch_size
69 self.patch_stride = patch_stride
70 if patch_stride is None:
71 self.patch_stride = patch_size
73 self.volFile = VolFile(volpath)
75 leader_filepath = volpath.parents[0] / volpath.name.replace("VOL-", "LED-")
76 self.leaderFile = None
77 if leader_filepath.exists():
78 self.leaderFile = LeaderFile(leader_filepath)
80 trailer_filepath = volpath.parents[0] / volpath.name.replace("VOL-", "TRL-")
81 self.trailerFile = None
82 if trailer_filepath.exists():
83 self.trailerFile = TrailerFile(trailer_filepath)
85 self.crop_coordinates = None
86 if crop_coordinates is not None:
87 self.crop_coordinates = crop_coordinates
89 self.images = {}
90 for pol in ["HH", "HV", "VH", "VV"]:
91 filepath = volpath.parents[0] / volpath.name.replace("VOL-", f"IMG-{pol}-")
92 if not filepath.exists():
93 continue
94 self.images[pol] = SARImage(filepath)
95 if self.crop_coordinates is None:
96 self.crop_coordinates = (
97 (0, 0),
98 (self.images[pol].num_rows, self.images[pol].num_cols),
99 )
101 if len(self.images) != self.volFile.num_polarizations:
102 raise RuntimeError(
103 f"I was expecting {self.volFile.num_polarizations} data file but I found {len(self.images)} data file"
104 )
106 # Precompute the dimension of the grid of patches
107 nrows = self.crop_coordinates[1][0] - self.crop_coordinates[0][0]
108 ncols = self.crop_coordinates[1][1] - self.crop_coordinates[0][1]
110 nrows_patch, ncols_patch = self.patch_size
111 row_stride, col_stride = self.patch_stride
113 self.nsamples_per_rows = (nrows - nrows_patch) // row_stride + 1
114 self.nsamples_per_cols = (ncols - ncols_patch) // col_stride + 1
116 @property
117 def polarizations(self):
118 return self.images.keys()
120 def describe(self):
121 print(
122 f"""
123Volume File
124===========
125{self.volFile}
127Leader File
128===========
129{self.leaderFile}
131Trailer File
132===========
133{self.trailerFile}
134"""
135 )
137 def __len__(self) -> int:
138 """
139 Returns the length of the dataset according to the patch size, stride
140 and image size
142 Returns:
143 int: the total number of available patches
144 """
146 return self.nsamples_per_rows * self.nsamples_per_cols
148 def __getitem__(self, idx: int):
149 """
150 Access and returns the subpatch specified by the index
152 Arguments:
153 idx: the index of the patch to access
154 """
155 row_stride, col_stride = self.patch_stride
156 start_row = (
157 self.crop_coordinates[0][0] + (idx // self.nsamples_per_cols) * row_stride
158 )
159 start_col = (
160 self.crop_coordinates[0][1] + (idx % self.nsamples_per_cols) * col_stride
161 )
162 num_rows, num_cols = self.patch_size
163 patches = {
164 pol: im.read_patch(start_row, num_rows, start_col, num_cols)
165 * self.leaderFile.calibration_factor
166 for pol, im in self.images.items()
167 }
169 if self.transform is not None:
170 patches = self.transform(patches)
171 else:
172 patches = np.stack([patchi for _, patchi in patches.items()])
174 return patches